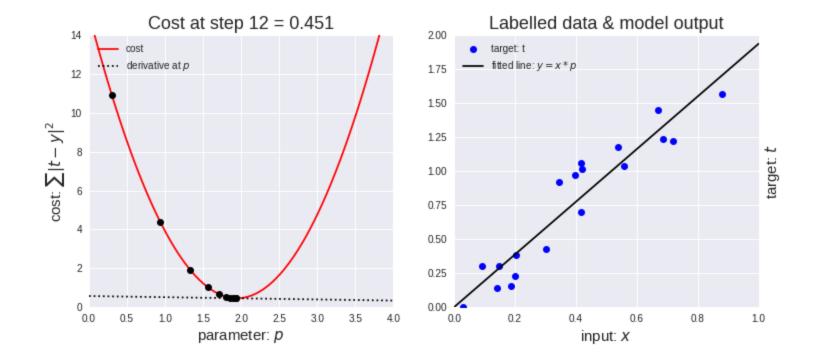
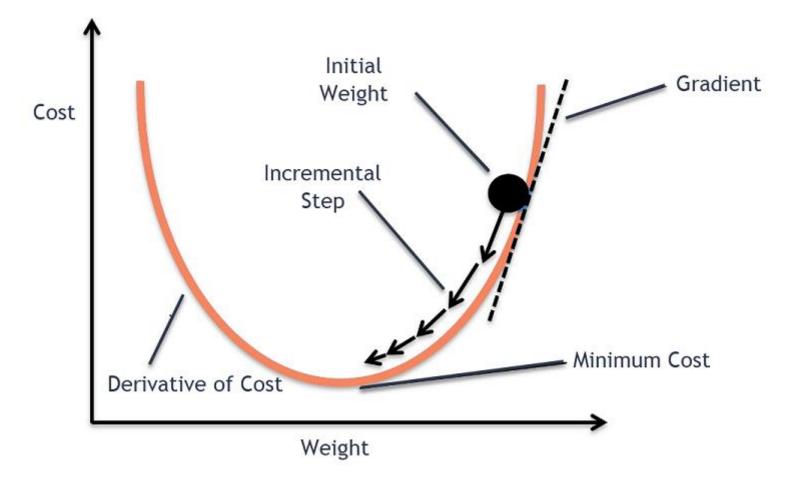
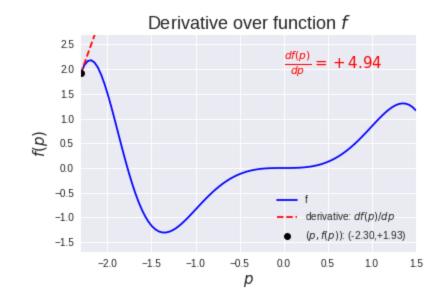
DEEP LEARNING FOR INVESTING

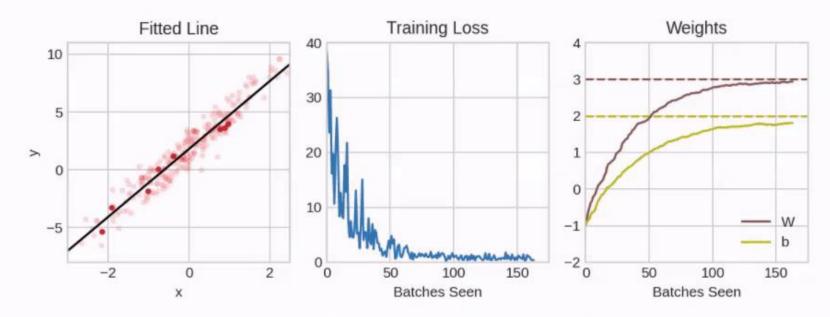
☑ FOREX
 ☑ CRYPTO
 ☑ หุ้น
 ☑ กองทุน
 ☑ กอง



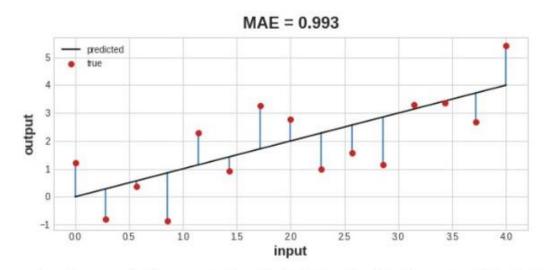
Source: https://medium.com/onfido-tech/machine-learning-101-be2e0a86c96a



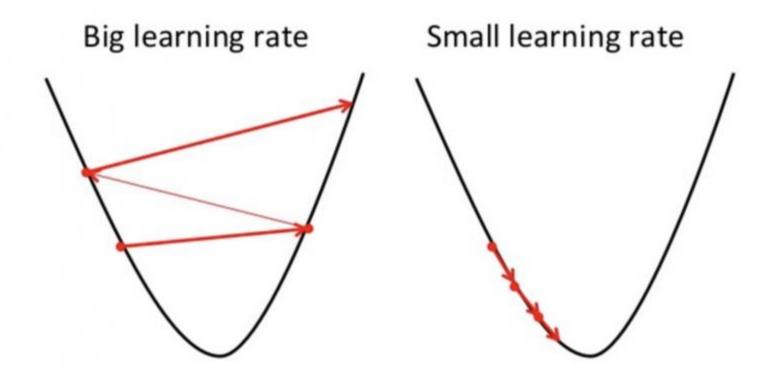


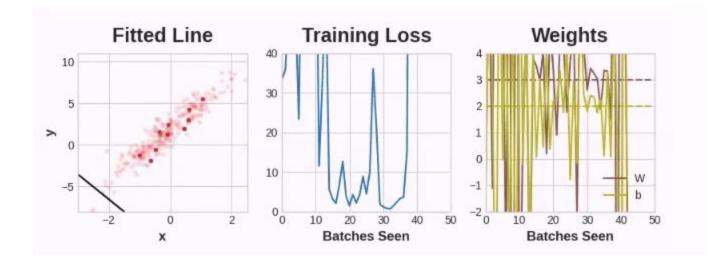


Training a neural network with Stochastic Gradient Descent.

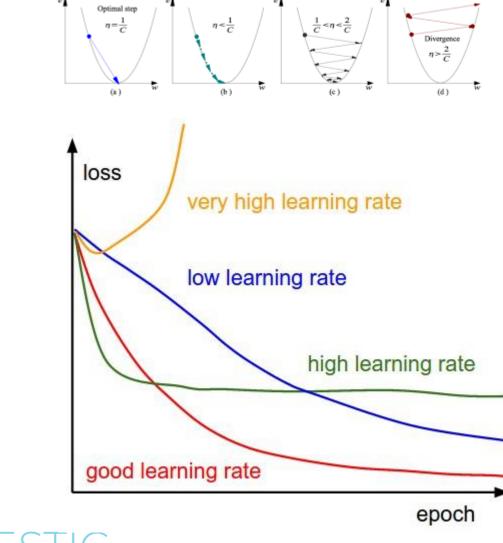


The mean absolute error is the average length between the fitted curve and the data points.

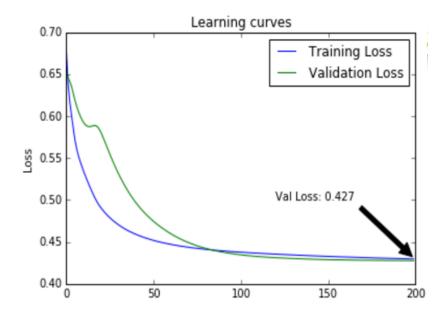




Source: Coursera



Source: researchgate

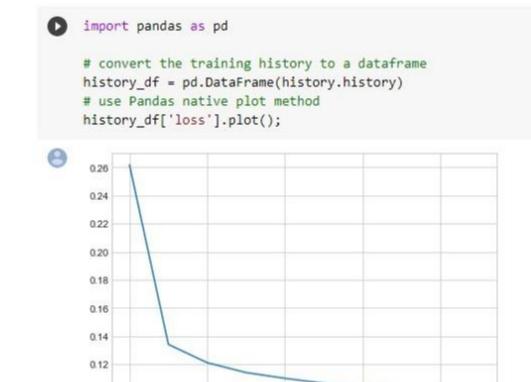


</>

Visualized Training Model

		.1. V	_	🐝 🖂 I	- F (
0	<pre>history = model.fit(X_train, y_train, validation_data=(X_valid, y_valid), batch_size=256, epochs=10,</pre>				
)				
Θ	Epoch 1/10 5/5 [=======] - 0s 40ms/step - loss: 0.2617 - val_loss: Epoch 2/10	0.1332			
	5/5 [=======] - 0s 17ms/step - loss: 0.1341 - val_loss: Epoch 3/10	0.1221			
	5/5 [==========] - 0s 18ms/step - loss: 0.1211 - val_loss: Epoch 4/10	0.1167			
	5/5 [=======] - 0s 17ms/step - loss: 0.1140 - val_loss: Epoch 5/10				
	5/5 [========] - 0s 24ms/step - loss: 0.1099 - val_loss: Epoch 6/10				
	5/5 [======] - 0s 22ms/step - loss: 0.1063 - val_loss: Epoch 7/10				
	5/5 [======] - 0s 22ms/step - loss: 0.1041 - val_loss: Epoch 8/10				
	5/5 [=======] - 0s 16ms/step - loss: 0.1023 - val_loss: Epoch 9/10				
	5/5 [=======] - 0s 18ms/step - loss: 0.1028 - val_loss: Epoch 10/10				
	5/5 [=========] - 0s 18ms/step - loss: 0.0991 - val_loss:	0.1029			

Visualized Training Model </>



0.10

Epoch :

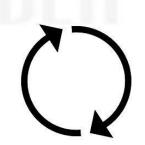
An Epoch represent one iteration over the entire dataset.

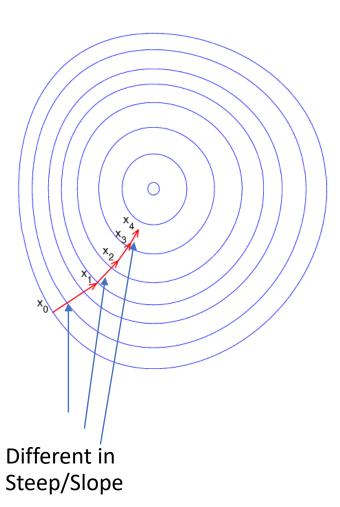
Batch :

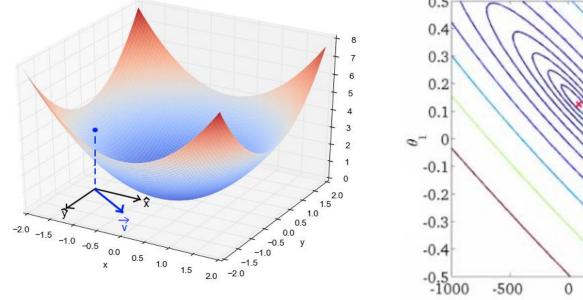
We cannot pass the entire dataset into the Neural Network at once. So, we divide the dataset into number of batches.

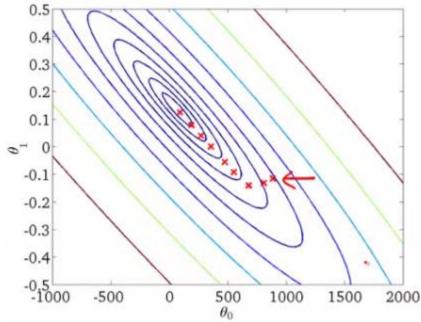
Iteration :

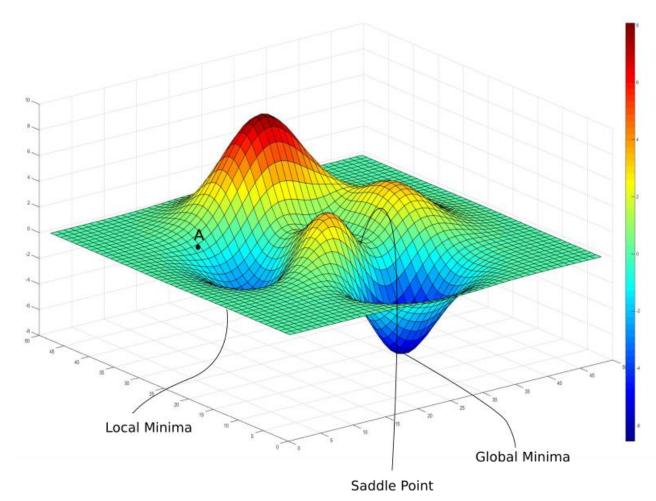
If we have 1000 images as Data ane a batch size of 20, then an Epoch should run 1000/20 = 50 iteration.

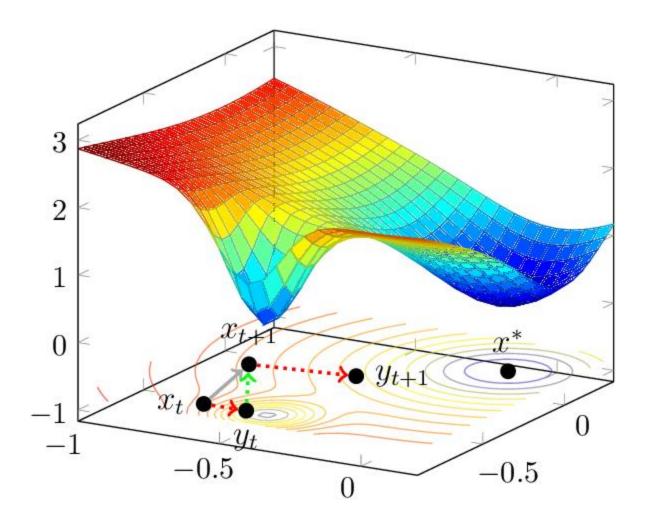


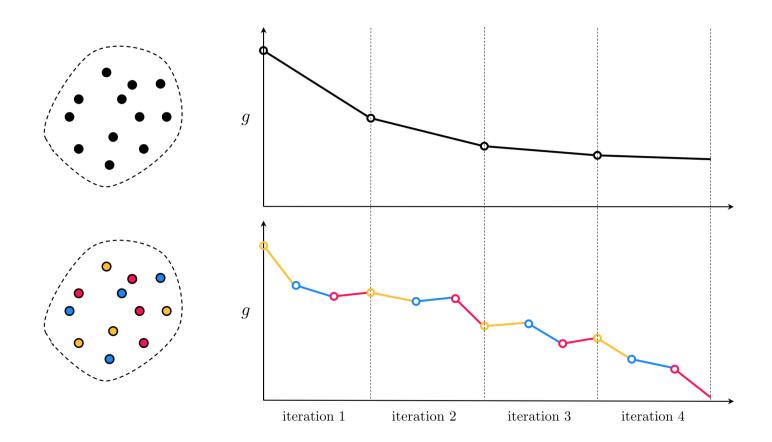




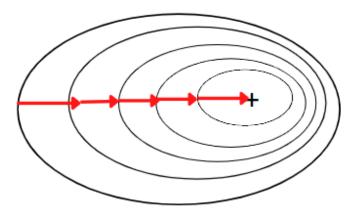




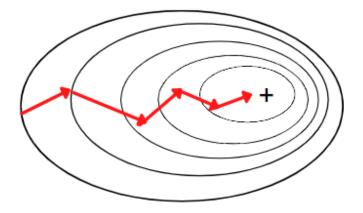




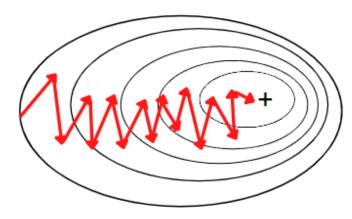
Batch Gradient Descent



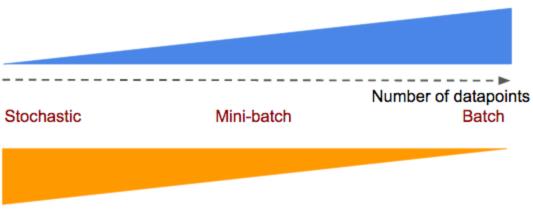
Mini-Batch Gradient Descent



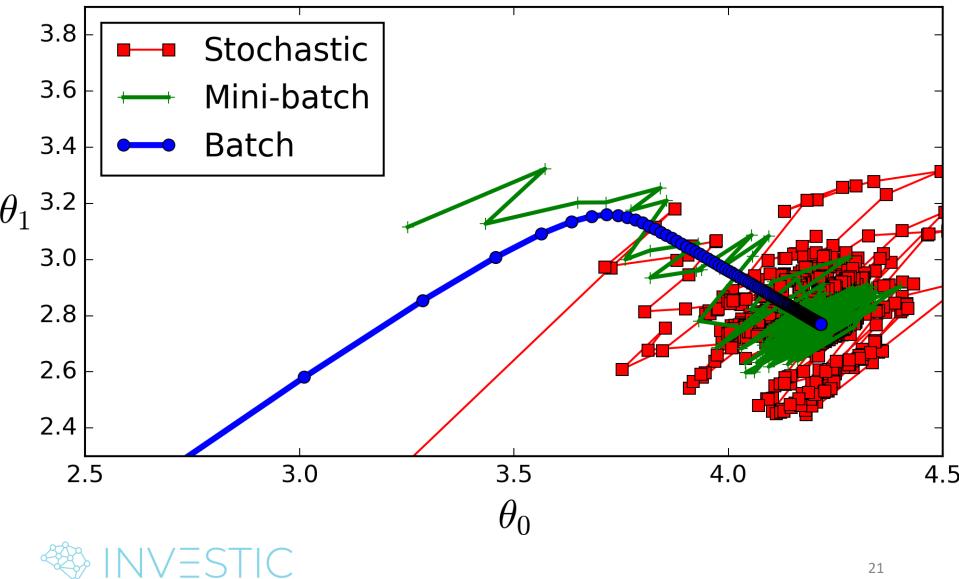
Stochastic Gradient Descent



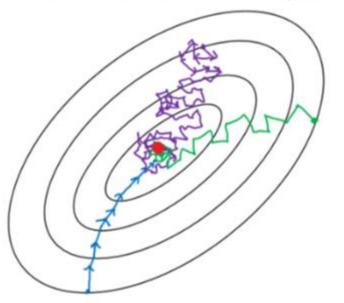
Computational resource per epoch

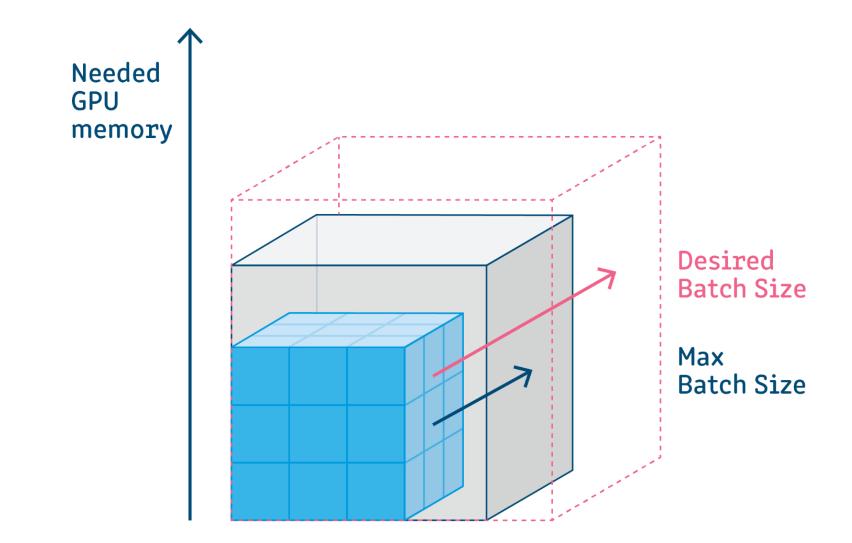


Epochs required to find good W, b values



- Batch gradient descent (batch size = n)
- Mini-batch gradient Descent (1 < batch size < n)</p>
- Stochastic gradient descent (batch size = 1)





compile

View source

Configures the model for training.

Example:

0 h

Optimizer

Classes 🖙

class Adadelta : Optimizer that implements the Adadelta algorithm.
class Adagrad : Optimizer that implements the Adagrad algorithm.
class Adam Optimizer that implements the Adam algorithm.
class Adamax : Optimizer that implements the Adamax algorithm.
class Ftrl : Optimizer that implements the FTRL algorithm.
class Nadam : Optimizer that implements the NAdam algorithm.
class Optimizer : Base class for Keras optimizers.
class RMSprop : Optimizer that implements the RMSprop algorithm.

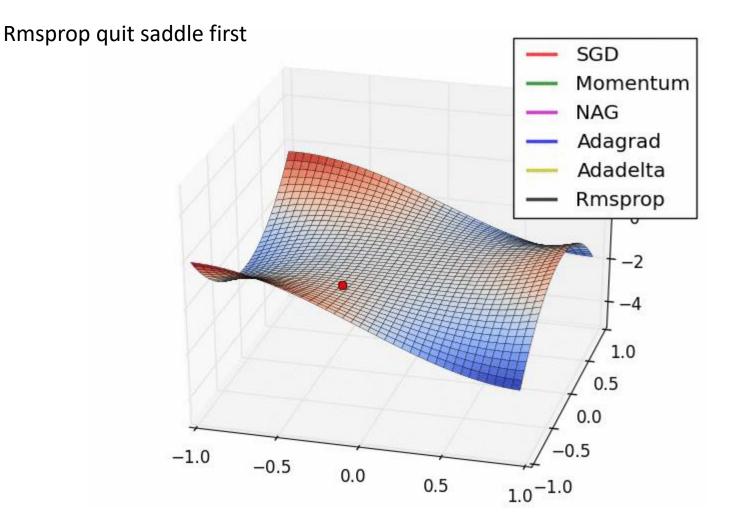
Loss

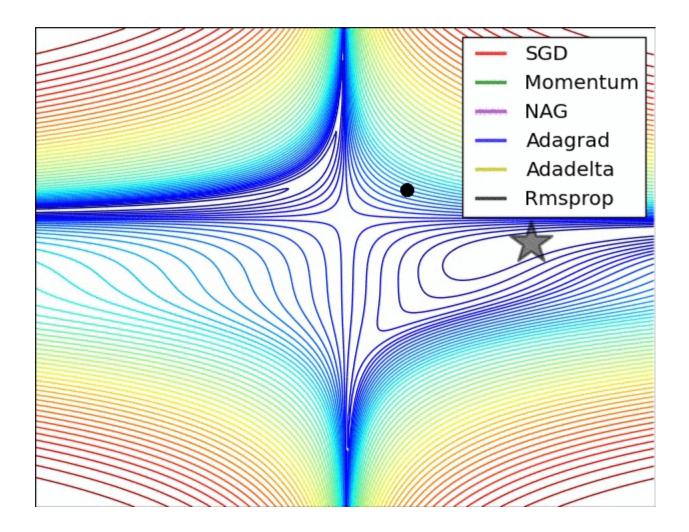
Classes

class BinaryCrossentropy : Computes the cross-entropy loss between true labels and predicted labels. class CategoricalCrossentropy : Computes the crossentropy loss between the labels and predictions. class CategoricalHinge: Computes the categorical hinge loss between y_true and y_pred. class CosineSimilarity: Computes the cosine similarity between labels and predictions. class Hinge: Computes the hinge loss between y_true and y_pred. class Huber : Computes the Huber loss between y_true and y_pred. class KLDivergence: Computes Kullback-Leibler divergence loss between y_true and y_pred. class LogCosh: Computes the logarithm of the hyperbolic cosine of the prediction error. class Loss : Loss base class. class MeanAbsoluteError : Computes the mean of absolute difference between labels and predictions. class MeanAbsolutePercentageError: Computes the mean absolute percentage error between y_true and y_pred. class MeanSquaredError : Computes the mean of squares of errors between labels and predictions. class MeanSquaredLogarithmicError: Computes the mean squared logarithmic error between y_true and y_pred. class Poisson: Computes the Poisson loss between y_true and y_pred. class Reduction : Types of loss reduction.

class SparseCategoricalCrossentropy : Computes the crossentropy loss between the labels and predictions.

class SquaredHinge: Computes the squared hinge loss between y_true and y_pred.





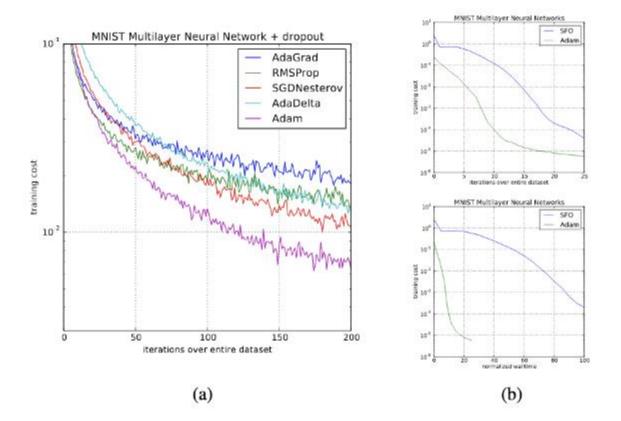
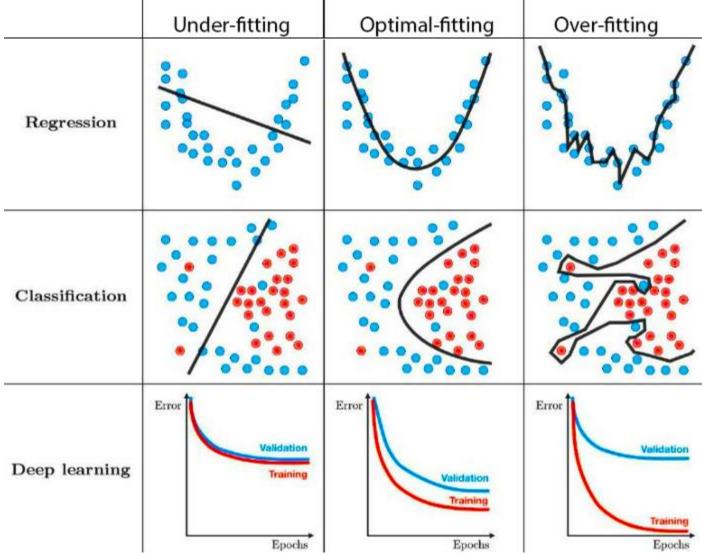
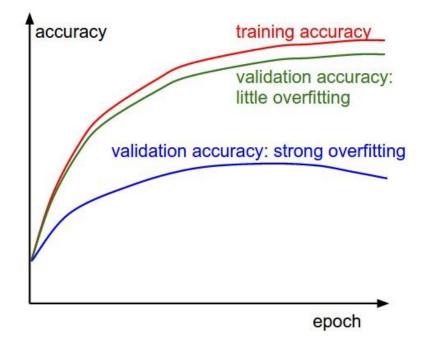
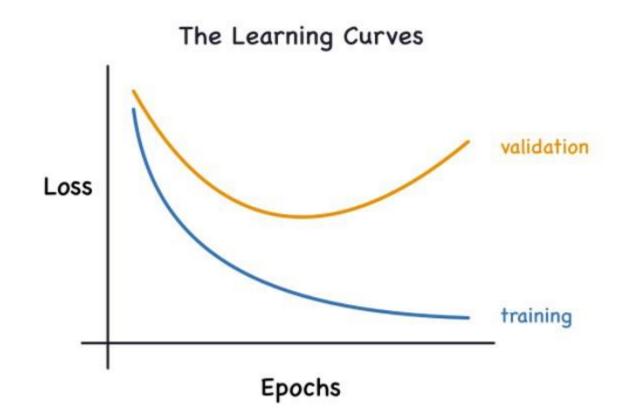


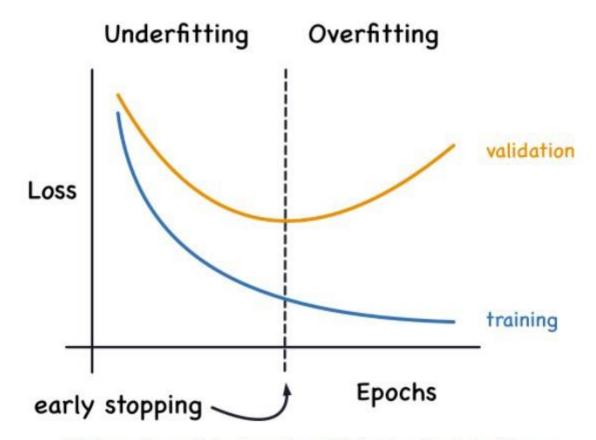
Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)



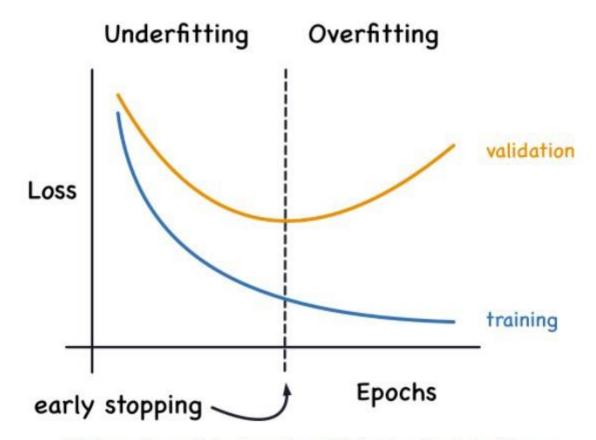




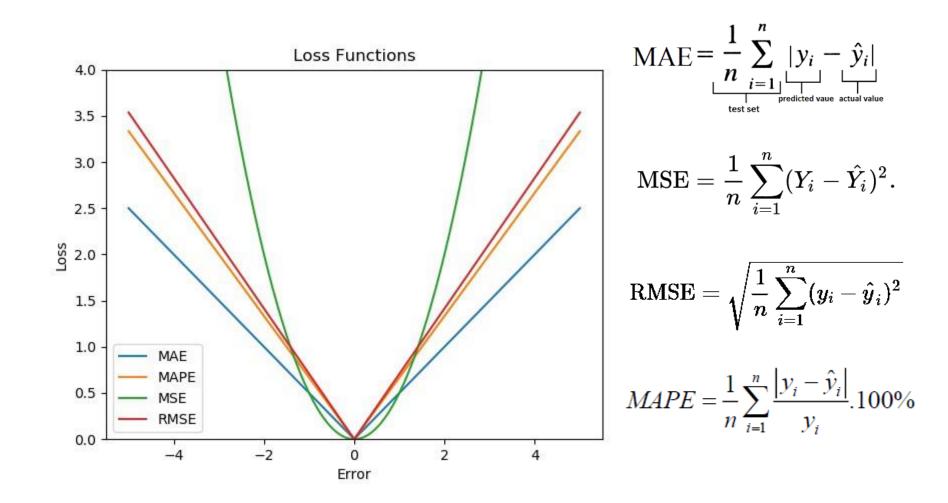
The validation loss gives an estimate of the expected error on unseen data.



We keep the model where the validation loss is at a minimum.



We keep the model where the validation loss is at a minimum.



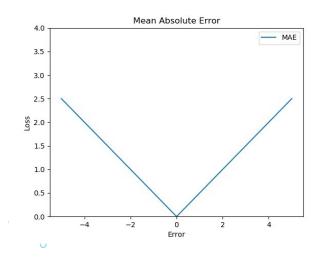
Mean Absolute Error (MAE)

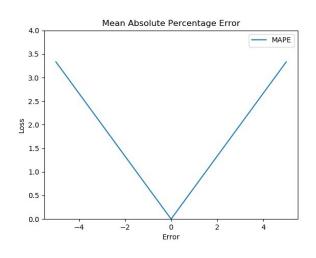
considering all the errors on the same scale

MAE is a linear scoring method, all the errors are weighted equally. This means that while backpropagation, we may just jump past the minima due to MAE's steep nature.

Mean Absolute Percentage Error (MAPE)

MAPE is similar to that of MAE, with one key difference, that it calculates error in terms of **percentage**, instead of raw values. Due to this, MAPE is independent of the scale of our variables.





Mean Squared Error (MSE)

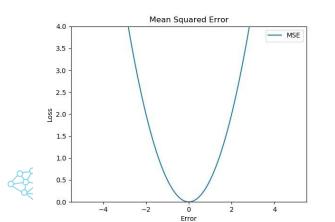
For small errors, MSE helps converge to the minima efficiently, as the gradient reduces gradually.

a **quadratic scoring** method, meaning, the penalty is proportional to not the error (like in MAE) but to the **square of the error**, which gives relatively higher weight (penalty) to large errors/outliers, while smoothening the gradient for smaller errors.

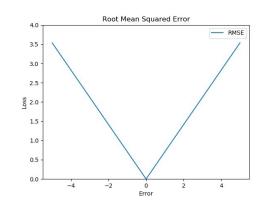
Root Mean Squared Error (RMSE)

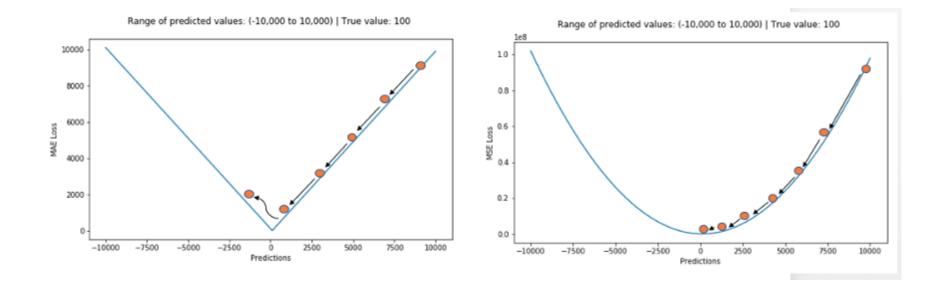
RMSE is just the **square root** of MSE, which means, it is again, a linear scoring method, but still better than MAE as it gives comparatively more weightage to larger errors.

RMSE is still a linear scoring function, so again, near minima, the gradient is sudden.

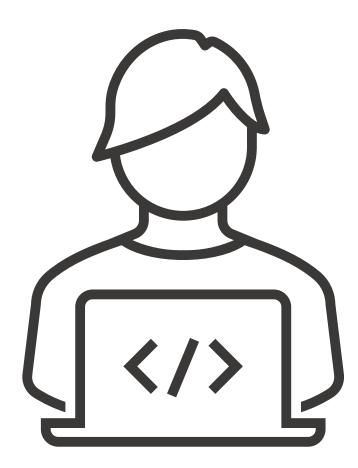


Less extreme losses even for larger values.





WORKSHOP TIME



Workshop I

Pick your asset class – Stock, Crypto, Forex ... Choose it yourself !! Try regression with neural network (1 layer, no activation function)

Workshop II

Based on workshop I, add 2 more layers and activation function as relu

- a) No activation function at output node
- b) Use sigmoid as activation function at output node

Recommend: ADAM as optimizer

Workshop III – False EMA cross over signal check with Deep Learning

Pick 1 asset, create ema-5 to ema-20 cross over, RSI-14, MACD. Check whether This strategy profit in next 1 month or not ...

Design your own network .. Just try it

